Effect of ion bombardment on the synthesis of vertically aligned single-walled carbon nanotubes by plasma-enhanced chemical vapor deposition.

نویسندگان

  • Zhiqiang Luo
  • Sanhua Lim
  • Yumeng You
  • Jianmin Miao
  • Hao Gong
  • Jixuan Zhang
  • Shanzhong Wang
  • Jianyi Lin
  • Zexiang Shen
چکیده

The synthesis of vertically aligned single-walled carbon nanotubes (VA-SWNTs) by plasma-enhanced chemical vapor deposition (PECVD) was achieved at 500-600 °C, using ethylene as the carbon source and 1 nm Fe film as the catalyst. For growth of high-quality VA-SWNTs in a plasma sheath, it is crucial to alleviate the undesirable ion bombardment etching effects by the optimization of plasma input power and gas pressure. The resistibility of synthesized VA-SWNTs against ion bombardment etching was found to be closely related to the growth temperature. At relatively low temperature (500 °C), the VA-SWNTs were very susceptible to ion bombardments, which could induce structural defects, and even resulted in a structural transition to few-walled nanotubes. For capacitively coupled radio frequency (rf) PECVD operating at moderate gas pressure (0.3-10 Torr), the ion bombardment etching effect is mainly dependent on the ion flux, which is related to the plasma input power and gas pressure.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Direct growth of three-dimensional multicomponent micropatterns of vertically aligned single-walled carbon nanotubes interposed with their multi-walled counterparts on Al-activated iron substrates{

Vertically aligned single-walled carbon nanotubes (VA-SWNTs) have been synthesized by an Alactivated plasma-enhanced chemical vapor deposition (PECVD) method. On this basis, we have developed a facile but effective method for direct growth of multicomponent micropatterns of VA-SWNTs interposed within the patterned areas surrounded by vertically aligned multi-walled carbon nanotubes (VA-MWNTs) o...

متن کامل

Optimized Conditions for Catalytic Chemical Vapor Deposition of Vertically Aligned Carbon Nanotubes

Here, we have synthesized vertically aligned carbon nanotubes (VA-CNTs), using chemical vapor deposition (CVD) method. Cobalt and ethanol are used as the catalyst and the carbon source, respectively. The effects of ethanol flow rate, thickness of Co catalyst film, and growth time on the properties of the carbon nanotube growth are investigated. The results show that the flow rate of ethanol and...

متن کامل

Freestanding vertically oriented single-walled carbon nanotubes synthesized using microwave plasma-enhanced CVD

Freestanding single-walled carbon nanotubes (SWCNTs) have been synthesized in a vertical direction, perpendicular to the growth substrate, using applied DC substrate bias in a microwave plasma-enhanced chemical vapor deposition (PECVD) synthesis process. The degree of alignment and spatial density of SWCNTs demonstrate a strong dependence on the magnitude of applied bias, with increased alignme...

متن کامل

Preferential syntheses of semiconducting vertically aligned single-walled carbon nanotubes for direct use in FETs.

We have combined fast heating with plasma enhanced chemical vapor deposition (PECVD) for preferential growth of semiconducting vertically aligned single-walled carbon nanotubes (VA-SWNTs). Raman spectroscopic estimation indicated a high yield of up to 96% semiconducting SWNTs in the VA-SWNT array. The as-synthesized semiconducting SWNTs can be used directly for fabricating FET devices without t...

متن کامل

Novel and Simple Synthesis Method for Submillimeter Long Vertically Aligned Single-Walled Carbon Nanotubes by No-Flow Alcohol Catalytic Chemical Vapor Deposition

Using a conventional thermal chemical vapor deposition (CVD) system, ethanol vapor was enclosed in a reactor, i.e., no flow, with Co/Mo dip-coated quartz substrates to synthesize submillimeter long vertically aligned single-walled carbon nanotube (SWNT) films successfully. The no-flow CVD method yielded an increase in film thickness of up to 0.11 mm compared with the normal flowing gas method f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanotechnology

دوره 19 25  شماره 

صفحات  -

تاریخ انتشار 2008